Structure and Vibrational Spectrum of β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x}, S_x)O₄] ($x \sim 0.5$), a New Superprotonic Conductor, and a Comparison with α -Cs₃(HSO₄)₂(H₂PO₄)

Sossina M. Haile¹

Materials Science, 138-78, California Institute of Technology, Pasadena, California 91125

and

Pamela M. Calkins and Dane Boysen

Materials Science and Engineering, University of Washington, Seattle, Washington 98195

Received December 5, 1997; accepted April 7, 1998

The structure of the new protonic conductor, β -Cs₃(HSO₄), $(H_{2-r}(P_{1-r}, S_r)O_4)$ (with a superprotonic transition at 125°C), has been determined by single-crystal X-ray diffraction methods. Structural features of this and the related compound, α -Cs₃(HSO₄)₂(H₂PO₄), have been further examined by Raman and IR spectroscopy. The new compound crystallizes in space group C2/c, contains four formula units in the unit cell, and has an x value (in the stoichiometry) of approximately 0.5. X-ray intensity data, collected at room temperature, yielded lattice parameters a = 20.04(1), b = 7.854(5), c = 8.954(5) Å, and $\beta =$ $100.11(2)^{\circ}$ and a unit cell volume of $1387.5(14) \text{ Å}^3$, implying a density of 3.304 g/cm³. Within the asymmetric unit, 10 nonhydrogen atoms and 3 hydrogen sites were located. Refinement of the X-ray data using anisotropic temperature factors for all 10 of the former yielded residuals $wR(F^2) = 0.0952$ and R(F) = 0.0358. The structure contains alternating zig-zig chains of anion tetrahedra and cesium ions, in a manner similar to that found in α-Cs₃(HSO₄)₂(H₂PO₄) and in CsHSO₄-II. The structure is unique, however, in that P and S occupy the same crystallographic position, and there is, accordingly, a variable H content and a partially occupied hydrogen bond. Broader peaks in the Raman spectrum of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) support the assumption of greater structural disorder in this compound than in α-Cs₃(HSO₄)₂(H₂PO₄). © 1998 Academic Press

INTRODUCTION

Many solid acid sulfates and selenates undergo superprotonic phase transitions at elevated temperatures. These include CsHSO₄ (1), Rb₃H(SeO₄)₃ (2), and Cs₅H₃(SeO₄)₄·xH₂O (3), and their deuterated analogs. Recently, we

¹To whom all correspondence should be addressed.

reported that such transitions also occur in compounds containing both SO₄ and PO₄ groups (4), thereby introducing a new class of compounds within the broad family of low-temperature proton conductors. In the present work, we describe in detail the structure of β -Cs₃(HSO₄)₂(H_{2-x} (P_{1-x}, S_x)O₄, the newest member of the sulfate–phosphate class of protonic conductors, as determined by X-ray diffraction. The compound undergoes a superprotonic transition at 125°C, at which the conductivity jumps from 7.9×10^{-5} to $1.3 \times 10^{-2} \, \Omega^{-1} \text{cm}^{-1}$; a complete discussion of the electrical and thermal properties has been reported elsewhere (5).

EXPERIMENTAL

Synthesis

Crystals of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}, S_x)O₄) were grown from aqueous solutions containing Cs₂CO₃, H₂SO₄, and H₃PO₄ in molar ratios of Cs:S:P of 1:0.8:0.2, as reported earlier (5). Slow evaporation of water under ambient conditions yielded plate-like crystals up to 3×5 mm in area after 5 to 7 days. Crystals grown more quickly often contained fluid inclusions that subsequently transformed into polycrystalline material. In addition, large quantities of crystalline powder of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}, S_x)O₄) (for subsequent chemical analysis) were obtained by heating aqueous solutions of the carbonate, sulfate, and phosphate in which the molar ratio of Cs:S:P was 1:0.85:0.15 and rapidly cooling the solution to $\sim 25^{\circ}$ C. The identity of the crystalline precipitate that formed was confirmed by comparing its experimentally measured X-ray powder diffraction pattern with that calculated on the basis of the singlecrystal structure determination.

Composition Determination

The composition of the single crystals was determined by energy dispersive spectroscopy (electron microprobe) and that of the crystalline powder via bulk chemical analytical means. Samples for microprobe analysis were mounted in an epoxy resin, polished, and then sputter-coated with gold to obtain a conductive surface. Characteristic peak intensities were measured with a JEOL Superprobe 733 and converted into mass percent using the Tracor Northern analytical software (6). The compounds CsHSO₄, CsH₂PO₄, and α -Cs₃(HSO₄)₂(H₂PO₄) served as standards. The sulfate content in the crystalline powder was determined by gravimetric measurement of BaSO₄, after dissolution of the sample in water and reaction with BaCl₂, as outlined in Christian (7).

The microprobe data, collected from two separate crystals, at three and five positions, respectively, indicated that the mole ratio of Cs: (P + S) was 1.01(2) and that of S: P was 4.2(3). This implies a value of x in β -Cs₃(HSO₄)₂(H_{2-x} $(P_{1-x}, S_x)O_4$) of 0.42. Furthermore, the range in values in the ratio of S:P was much greater than that in the ratio of Cs:(S + P) suggesting, at first, that the composition was rather inhomogeneous. However, microprobe analysis of $Cs_5(HSO_4)_3(H_2PO_4)_2$ (8,9), a compound in which the P:S ratio is fixed by the fact that P and S occupy distinct sites, showed a similar variation in the measured P:S values and a similar apparent deficiency in sulfur. Hence, the value of x in the single crystals is probably 0.5. The mean molar content of SO_4 in crystalline powder of β -Cs₃(HSO₄)₂ $(H_{2-x}(P_{1-x}S_x)O_4)$ was found to be 2.46(5), which is within one standard deviation of the value expected for x = 0.5, directly indicating, in this case, a stoichiometry of $Cs_3(HSO_4)_2(H_{1.5}(P_{0.5}, S_{0.5})O_4).$

Diffraction Data Collection

Full details of the crystal data, data collection procedure, and final refinement parameters are provided in Table 1. X-ray data were collected at room temperature, assuming a primitive unit cell. Analysis of the systematic absences subsequently showed the lattice to be C-centered.

Optical Spectroscopy

Infrared and Raman spectra were acquired at room temperature using a Nicolet System 800 FTIR spectrometer over the wavenumber range 3600 to 500 cm⁻¹ and a Nicolet 950 Raman unit over the range 3600 to 300 cm⁻¹, respectively. Prior to data collection, ground powder samples were placed under vacuum at ambient temperatures for approximately 30 min to remove surface-adsorbed water. Powdered samples were used for acquiring Raman data, whereas samples for IR data collection were mixed with KBr and pressed into pellets.

TABLE 1

Crystal Data, Data Collection Parameters, Data Refinement Parameters, and Other Experimental Details for the Structure Determination and Refinement of β -Cs₃(HSO₄)₂(H_{2-x} (P_{1-x}S_x)O₄)

Crystal data	
Compound name	β -Cs ₃ (HSO ₄) ₂ (H _{2-x} (P _{1-x} S _x)O ₄)
Formula	$Cs_3S_{2+x}P_{1-x}O_{12}H_{4-x}, x \sim 0.5$
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 20.04(1) Å
	b = 7.854(5) Å
	c = 8.954(5) Å
	$\beta = 100.11(2)^{\circ}$
Unit cell volume	$1387.5(14) \text{Å}^3$
Formula weight	689.85 au
Z	4
Density (calculated)	$3.304 \mathrm{mg \ m^{-3}}$
Absorption coefficient	7.87 mm ⁻¹
Crystal size	$0.10 \times 0.15 \times 0.20 \mathrm{mm}^3$
Crystal shape	Irregular
Crystal habit (forms)	Irregular
Crystal color	Colorless
Crystal mounted No. of reflections for cell	On glass fiber with epoxy
	13 $4.9^{\circ} < \Theta < 10.2^{\circ}$
measurement	4.9 < \textbf{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\text{\tint{\text{\tint{\text{\text{\tint{\tint{\tint{\tint{\tint{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tin}\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tinit{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\tinit}}}\tint{\tinithtint{\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tinit{\tiin}\tint{\tiin}\tinit{\tiin}\tiint{\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin}\tiin
Data collection	
Temperature	293(2) K
Radiation	X-ray, $MoK\alpha$
Wavelength	0.71073 Å
Instrument	Crystal logic diffractometer
Data collection method	Θ–2Θ scan
F(000)	1248.0
Absorption correction method	Empirical, Ψ scan
Maximum and minimum	0.82 and 1.00
transimission factors	0.82 and 1.00
Theta range for data collection	2.01–27.50
Index ranges	$0 \le h \le 23, \ 0 \le k \le 9,$
fildex ranges	$0 \le l \le 25, \ 0 \le k \le 9,$ $-10 \le l \le 10$
Reflections collected	$-10 \le t \le 10$ 2607 (assuming C centering)
Independent reflections	1121 ($R_{\text{int}} = 0.0216$)
Significant reflections	950 $(I > -2\sigma)$
Standards	[(-2,2,1), (-4,-2,-1), (0,2,-3)]
Deviation of standards from	[(2,2,1), (1, 2, 1), (0,2, 3)]
initial value	Stable
Decay correction	None applied
Refinement	
Refinement method	F^2
$wR[F^2 > 2\sigma(F^2)]$	0.0840
$wR(F^2)$	0.0952
$R[F > 4\sigma(F)]$	0.0358
Goodness-of-fit, S , on F^2	1.116
No. of reflections used in	11110
refinement	1121
No. of refined parameters	84
Weighting scheme	$w = \left[\sigma^2(F_0^2) + (0.0106*P)^2 + 7.08*P\right]^{-1}$
	where $P = (1/3)^* (\text{Max}(F_0^2, 0) + 2^*F_c^2)$
(Δ/σ) max/mean	0.268, 0.038
Fourier differences peaks	
max/min	$1.36/-1.58e { m \AA}^{-3}$

TABLE 1—Continued

Refinement	
Anisotropic thermal	
parameters	All nonhydrogen atoms
Extinction method	Sheldrick (1992)
Extinction coefficient	0.0107(14)
Sources of atomic scattering	
factors	Cromer and Waber (12)
Treatment of H atom	Not refined from X-ray data: positions as determined from a preliminary refinement of neutron data are reported
Computer programs	
Structure solution	SHELXS (13)
Structure refinement	SHELXL (14)
Structure depiction	ATOMS from Shape Software
Powder analysis	JADE from Materials Data, Inc.

RESULTS

Structure Determination and Refinement

On the basis of systematic absences (h + k = 2n + l) absent, and l = 2n + 1 absent for h01 peaks), the space group C2/c was selected as the starting point for the solution of the structure and later proved to be the most appropriate. The structure was solved by first locating the Cs and X atom sites, where X = P or S, from direct methods. The O atom sites were identified from subsequent Fourier difference maps. From these data alone, it was impossible to directly determine which of the X atoms should be sulfur and which should be phosphorus. However, on the basis of the chemical analysis, and the similarity of the structure of β - $Cs_3(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ to that of α - $Cs_3(HSO_4)_2$ (H₂PO₄) (10), as discussed below, it was presumed that the X atom position located at an 8f site was occupied entirely by sulfur and that at a 4e site by both phosphorus and sulfur (see Table 2). More recent neutron diffraction studies (to be published shortly) have confirmed this presumption, and suggest, in agreement with the chemical analysis, that the P: S ratio at the 4e site is 0.5:0.5. The X-ray data were also unable to directly reveal the location of hydrogen atoms from Fourier difference maps. However, an examination of intertetrahedral oxygen-oxygen distances suggested that three hydrogen sites existed, the first linking O(1) and O(1'), the second linking O(2) and O(3), and the third weakly linking O(5) and O(6). At the third site, partial occupancy was presumed both because of the long O(5)–O(6) distance, 3.163(10) Å, and because full occupancy would have provided more hydrogen than was expected on the basis of the chemical analysis. These assumptions have also been, to a great extent, supported by the neutron studies (11).

In the latter stages of the refinement, the possibility that the structure crystallized in a lower-symmetry space group

TABLE 2 Atomic Coordinates and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^2$) for β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄

Atom	Site	X	у	z	U(eq)
Cs(1)	4e	$\begin{array}{c} \frac{1}{2} \\ 0.32339(3) \\ \frac{1}{2} \\ 0.15878(9) \\ 0.5252(3) \\ 0.4425(3) \\ 0.1658(3) \\ 0.1026(3) \end{array}$	0.40247(8)	14	4.01(3)
Cs(2)	8f		0.13433(7)	0.38214(7)	4.94(3)
(P, S) ^a	4e		0.9061(3)	14	3.78(5)
S	8f		0.1286(2)	0.0703(2)	3.03(6)
O(1) _{A/D}	8f		0.0208(6)	0.1351(5)	3.86(12)
O(2) _A	8f		0.7994(7)	0.1710(6)	4.60(14)
O(3) _D	8f		0.7719(7)	0.7191(6)	4.78(14)
O(4)	8f	0.1026(3)	0.9871(8)	0.5600(7)	5.9(2)
$O(5)_{A^*}$	8f	0.2215(3)	0.9623(9)	0.5781(8)	7.4(2)
$O(6)_{D^*}$	8f	0.1465(4)	0.7484(8)	0.4478(7)	6.7(2)

Note. U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor. The subscripts D, A, and A/D indicate donor, acceptor, and mixed donor–acceptor oxygen atoms, respectively, in a hydrogen bond. An asterisk indicates that the oxygen atom only weakly participates in a hydrogen bond (see text for further explanation).

was explored, particularly because a few systematic absence violations of the C centering had been observed. Specifically, 5 of approximately 1430 peaks with indices h + l =2n + l had intensity greater than 4σ . The non-centered space groups examined were P2/c, P2, and Pc. In addition, the non-centrosymmetric space group Cc was examined. Pseudosymmetry-related atoms were generated and refinement was carried out by either letting all parameters vary independently or by explicitly linking the values of appropriately selected parameters. In those few cases where the refinement did not simply fail, all pseudosymmetry-related parameters (that were not explicitly linked) were correlated above the 80% level. Furthermore, in no case did the quality of the refinement, as measured by the magnitudes of the standard deviations of refined parameters and chemical reasonableness of the solution, improve. Hence, C2/c was taken as the correct space group.

In the final refinement the scale factor, all atomic coordinates, and all anisotropic displacement parameters were varied. A refined extinction correction was applied, but it became apparent that this correction could not adequately describe the reduction in intensity of very strong peaks and, thus those peaks of intensity greater that 15,000 cps (106 of 2713) were omitted. The final residual obtained was $wR(F^2) = 0.0952$ (Table 1). The largest peak in the difference map was $1.36 \, e\, \text{Å}^{-3}$ and the deepest hole $-1.58 \, e\, \text{Å}^{-3}$. While the refinement was carried out by minimizing a weighted residual based on F^2 and using all data, the value of a more conventional R(F) calculated from "observed" data, $F_0 > 4\sigma(F_0)$, is provided for comparison with older literature R values. Calculated and observed F^2 have been

^aOccupancy fixed at (0.5P, 0.5S).

TABLE 3
Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^2$) for β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cs(1)	3.66(4)	3.34(4)	4.93(5)	0	0.48(3)	0
Cs(2)	3.42(4)	4.10(4)	7.05(5)	-0.71(2)	0.25(3)	0.23(2)
(P, S)	3.74(14)	2.95(12)	2.34(12)	0	0.38(10)	0
S	3.39(10)	3.49(10)	4.50(12)	-0.19(8)	0.80(9)	0.11(7)
$O(1)_{A/D}$	4.6(3)	3.9(3)	3.0(3)	-0.2(2)	0.4(2)	-1.5(2)
$O(2)_A$	5.3(3)	4.6(3)	3.9(3)	-0.1(2)	0.6(3)	-1.8(3)
$O(3)_D$	4.4(3)	5.0(3)	4.6(3)	1.4(3)	0.0(2)	-0.6(2)
O(4)	6.0(4)	6.1(4)	5.4(3)	0.4(3)	0.6(3)	2.3(3)
$O(5)_{A*}$	5.5(4)	8.5(5)	7.6(5)	3.1(4)	-0.3(3)	-2.8(4)
O(6) _{D*}	9.9(5)	5.7(4)	4.1(3)	-1.1(3)	0.4(3)	1.5(4)

Note. The anisotropic displacement factor exponent takes the form $-2\pi^2 \lceil h^2 a^{*2} U_{11} + \cdots + 2hk a^* b^* U_{12} \rceil$.

deposited. The atomic coordinates and thermal parameters are given in Tables 2 and 3, respectively. Interatomic distances in the cation coordination polyhedra are reported in Table 4. Hydrogen bond lengths and some preliminary geometric details obtained from the neutron studies are provided in Table 5.

Optical Spectroscopy

The low-frequency IR and Raman spectra of β - $Cs_3(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ and of α - $Cs_3(HSO_4)_2$ (H₂PO₄) are shown in Fig. 1. Peak positions in the Raman spectra are indicated in the accompanying fitted plots (Fig. 2; see also Table 8 below). It is apparent, even before any assignment of peaks to specific motions is made, that the peaks in the Raman spectrum of β -Cs₃(HSO₄)₂(H_{2-x} $(P_{1-x}S_x)O_4$) are significantly broader than those of α -Cs₃(HSO₄)₂(H₂PO₄), suggesting an overall greater degree of disorder in the former. The high-frequency spectra (both IR and Raman) were generally featureless, with the exception of three very broad peaks, in the vicinity of 2700, 2300, and 1700 cm⁻¹ for both compounds. Specifically, these were observed for β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) at 2820, 2320, and 1700 cm⁻¹ by Raman spectroscopy and at 2850, 2300, and $1650 \,\mathrm{cm}^{-1}$ by IR. For α -Cs₃(HSO₄)₂(H₂PO₄) the peaks appeared at 2870, 2480, and 1640 cm⁻¹ by Raman methods and at 2900, 2300, and 1650 cm⁻¹ by IR.

DISCUSSION

Polyhedral Coordination

The compound β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) contains 10 independent, nonhydrogen atom sites in the asymmetric unit. The two crystallographically independent Cs atoms are coordinated by 10 and 11 oxygen atoms,

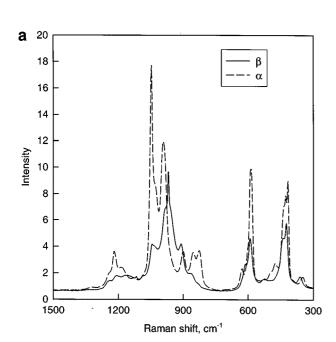
TABLE 4
Interatomic Distances and Angles in the Coordination Polyhedra of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄)

Cs(1)-	Distance, Å	Cs(2)-	Distance, Å	L				
$O(4)\$1^a$	3.017(6)	O(1)\$5	3.193(5)					
O(4)\$2	3.017(6)	O(5)\$7	3.195(7)					
O(4)\$3	3.220(6)	O(5)\$6	3.214(6)					
O(4)\$4	3.220(6)	O(2)\$8	3.238(6)					
O(1)	3.237(5)	O(6)\$4	3.243(6)					
O(1)\$5	3.237(5)	O(3)\$7	3.321(6)					
O(1)\$5 O(2)\$5	3.356(6)	O(4)\$2	3.323(7)					
	3.356(6)		3.329(8)					
O(2)	` '	O(5)\$2	` '					
O(6)\$3	3.376(7)	O(3)\$9	3.334(6)					
O(6)\$4	3.376(7)	O(6)\$9	3.376(7)					
		O(3)\$10	3.700(6)					
P, S-	Distance, Å		Angles, °					
$O(2)_A$	1.499 (5)							
$O(2)_A$ \$5	1.499 (5)	112.0 (5)						
$O(1)_{A/D}$ \$11	1.519 (5)	109.4 (3)	109.3 (3)					
$O(1)_{A/D}$ \$12	1.519 (5)	109.3 (3)	109.4 (3)	107.2 (4)				
- (/A/D ·	S, P-	O(2)	O(2)\$5	O(1)\$11				
	2,1	J (2)	3(2)40	0(1)#11				
O-O	Distances, Å							
O(2)\$5	2.485 (11)							
O(1)\$11	2.462 (7)	2.463 (7)						
O(1)\$12	2.463 (7)	2.462 (7)	2.445 (9)					
0(1)#12	O(2)	O(2)\$5	O(1)\$11					
S-	Distance, Å		Angles, °					
O(5) _{A*} \$7	1.437 (6)							
O(4)\$7	1.438 (6)	111.0 (5)						
	1.450 (6)		110.2 (4)					
$O(6)_{D^*}$ \$7		113.5 (5)		107.2 (4)				
$O(3)_A$ \$7	1.530 (6)	105.4 (4)	109.3 (3)	107.2 (4)				
	S(1)-	O(5)\$7	O(4)\$7	O(6)\$7				
O-O	Distances, Å							
O(4)\$7	2.368 (10)							
O(6)\$7	2.414 (10)	2.369 (8)						
O(3)\$7	2.360 (8)	2.421 (8)	2.399 (8)					
· /·	O(5)\$7	O(4)\$7	O(6)\$7					
^a Symmetry								
	$-y + \frac{3}{2}, z - \frac{1}{2}$	\$2 -	$x + \frac{1}{2}$, $-y + \frac{3}{2}$	-z + 1				
\$3 $x + \frac{1}{2}$, $y - \frac{1}{2}$, z \$4 $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$								
5 - x +	$1, y, -z + \frac{1}{2}$	\$6 x,	y - 1, z					
x, -y + x	$+1, z-\frac{1}{2}$	\$8 x,	$-y+1, z+\frac{1}{2}$					
9 - x +	$\frac{1}{2}$, $-y + \frac{1}{2}$, $-z +$		$x + \frac{1}{2}, y - \frac{1}{2}, -$	$z + \frac{3}{2}$				
11 - x +	$1, y + 1, -z + \frac{1}{2}$		y+1,z					

respectively. The observed coordination numbers and average Cs-O distance, 3.28(14) Å, are consistent with typical values for Cs (15). The S and P atoms are tetrahedrally coordinated by oxygen. The X-O distances determined, with an average of 1.49(4) Å, are also quite reasonable. Differences between X-O lengths are discussed below in the

TABLE 5
Atomic Coordinates of Protons in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) as Determined from a Preliminary Refinement of Neutron Data (full details to be published shortly) and the Geometry of the Associated Hydrogen Bonds

Atom	X	у	z	O neighbors	Site symmetry	$d(O \cdots O)$ (Å)	d(O–H) (Å)	d(O···H) (Å)	∠OHO (°)
$H(1)^a$	0.5	0	0	$O(1)_{A/D} = O(1)_{A/D} \$ 1^b$	Ī	2.474 (9)	1.237	(1.237)	180
H(2)	0.1157(2)	0.7435(4)	0.7603(4)	$O(2)_D - O(3)_A \$2$	1	2.597 (8)	1.151	1.450	173.1
$H(3)^c$	0.2072(2)	0.6906(11)	0.4490(9)	$O(5)_{A^*} - O(6)_{D^*} \2	1	3.163 (10)	1.296	1.914	159.8


^a Proton probably displaced from the center of symmetry.

context of the hydrogen bonds formed between the oxygen atoms of neighboring tetrahedral groups. The thermal ellipsoids obtained (Fig. 3) show the Cs, S, and P atoms to exhibit rather isotropic thermal displacements and the oxygen atoms to undergo the greatest thermal displacements in a direction perpendicular to the X-O bond, as would be expected in such a compound.

Hydrogen Bonds

It is well known that X-OH distances are, in general, longer than X-O distances, and that X-OH distances in-

crease as the strength of the hydrogen bond, O–H···O increases, that is, as O···O decreases. Moreover, it is also rather well-established that in response to increases in X-OH bond lengths, the remaining X-O bonds of an XO_4 group tend to shorten. In our investigation of the structures of α -Cs₃(HSO₄)₂(H₂PO₄) and Cs₅(HSO₄)₃(H₂PO₄)₂ use of correlations between X-OH, X-O, and O···O distances proved a powerful tool for identifying donor (O_D), acceptor (O_A), and non-hydrogen-bonded oxygen atoms, and for distinguishing between single- and double-minimum potential wells. For brevity, we refer to the latter type of hydrogen bond as "disordered." In Fig. 4 the linear regression curves

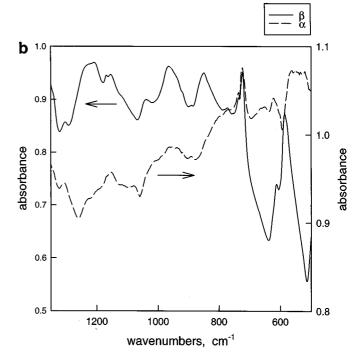


FIG. 1. Optical spectra obtained for β -Cs₃(HSO₄)₂(H₂- $_x$ (P₁- $_x$ S $_x$)O₄) and α -CS₃(HSO₄)₂(H₂PO₄). (a) Raman spectra. (b) Infrared spectra.

^b Symmetry codes: \$1: -x + 1, -y, -z; \$2: $-x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1.

^c Site occupancy ≈ 0.25 .

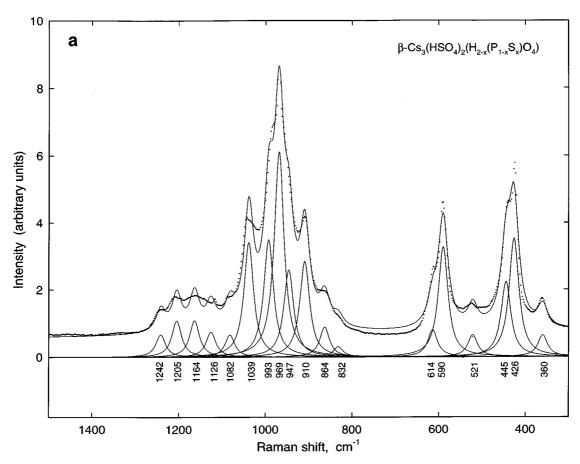


FIG. 2. Locations of fitted peaks to the Raman spectra of (a) β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄)—Lorentzian peaks with FWHM of 15 cm⁻¹, and (b) α-CS₃(HSO₄)₂(H₂PO₄)—Pearson VII peaks with FWHM of 27 cm⁻¹.

of X–O(H) versus O···O are compared with the distances obtained in β -Cs₃(HSO₄)₂(H_{2-x}(S_xP_{1-x})O₄). The data for P–O(H) refer to a phosphate group in which two oxygen atoms serve as donors in an H bond (H₂PO₄ group) and were taken from Ichikawa (16); those for S–O(H) refer to a sulfate group containing only one donor oxygen atom (HSO₄) and were taken from Haile and Calkins (8).

Data point (a) of Fig. 4, representing the symmetric bond about H(1), shows that the (P, S)–O(1) bonds are elongated relative to typical P–O and S–O bonds, and confirms that the O(1) atoms are involved in forming hydrogen bonds. The O(1)···O(1) distance, 2.474(9) Å, is at the lower limit of observed double-minimum symmetric bond lengths (17). The combination of O···O and X–O lengths is comparable to that of the disordered bond in CsH₂PO₄, 2.472(7) and 1.529(4) Å, respectively (18), and in K₃H(SO₄)₂, 2.493(1) and 1.534(1) Å, respectively (19). These observations suggest that the bond formed by H(1) in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x) O₄) should also be disordered, with the configuration

 $O(1)_{A/D}-H(1)_{1/2}-H(1)_{1/2}-O(1')_{A/D}$. Examining the X-O bond distances associated with the H(2) bond, the greater S-O(3) length than (P, S)-O(2) indicates that O(3) should be the donor atom and O(2) the acceptor. However, the difference in lengths is not as large as normally observed, and suggests that H(2) may, in fact, reside in an asymmetric double-minimum potential. The S–O distances for the remaining oxygen atoms, points (d), (e), and (f) of Fig. 4, lie almost directly on the linear regression curve for a sulfate group that has one donor oxygen atom, further indicating that O(3) is the single donor oxygen atom in the SO_4 group. As stated earlier, the third proton, H(3), resides between two oxygen atoms, O(5) and O(6), that are rather far apart, 3.160 Å. While it would be meaningless to extend the linear regression curves of Fig. 4 to this value, as such long hydrogen bonds are rarely observed, it can be concluded that the bond between O(5) and O(6) is rather weak. Weak hydrogen bonds are normally accompanied by short O_D-H distances and imply long $X-O_D$ distances. In this case, however, neither S–O(5) nor S–O(6) appears affected by the presence

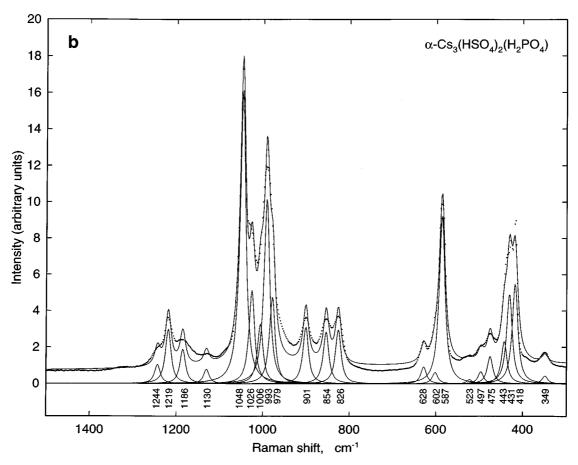
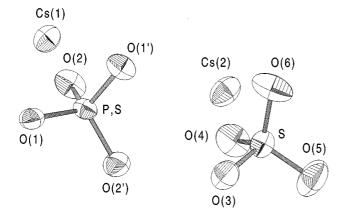



FIG. 2—Continued

of the proton. The simultaneous observation of a long $O \cdots O$ bond and normal X–O distances can be explained by a low occupancy at the H(3) site, as was already proposed for stoichiometric reasons.

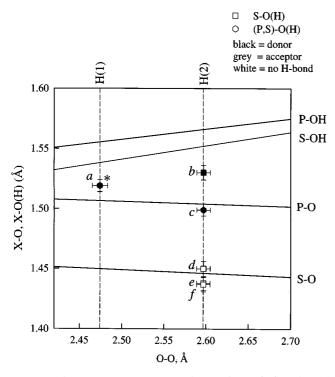
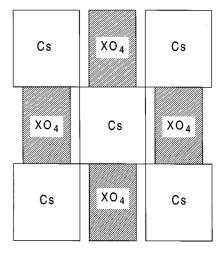


FIG. 3. Thermal ellipsoid representation of the structure of β -Cs₃ (HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) with an electron probability of 50%.

Polyhedral Connectivity and Comparisons to Similar Structures


The arrangement of Cs cations and of XO_4 anions in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) is very similar to that found in α -Cs₃(HSO₄)₂(H₂PO₄) (10), in CsHSO₄-II (midtemperature phase) (20) and in the CsHSO₄-like region of Cs₅(HSO₄)₃(H₂PO₄)₂ (8). A preliminary discussion of the structural relationship between the first two sulfate–phosphates has been provided in Haile *et al.* (5), and that between α -Cs₃(HSO₄)₂(H₂PO₄) and CsHSO₄-II has been reported in Haile *et al.* (10). We present here a more detailed comparison of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) with its closest relative, α -Cs₃(HSO₄)₂(H₂PO₄). A broader examination of the structural relationships between all the compounds in this class of sulfate–phosphates is presented in Haile and Calkins (8).

Both the α -Cs₃(HSO₄)₂(H₂PO₄) and β -Cs₃(HSO₄)₂ (H_{2-x}(P_{1-x}S_x)O₄) structures are comprised of zig-zag chains of Cs cations and of XO_4 anions that alternate with one another in a checkerboard fashion. In addition, the lattice parameters of α -Cs₃(HSO₄)₂(H₂PO₄), a = 19.546(3),

FIG. 4. The *X*-O versus O···O data points of β-Cs₃(HSO₄)₂ (H_{2-x}(P_{1-x}S_x)O₄) as compared with the linear regression curves for SO₃(OH) (8) and PO₂ (16). Data points refer to the following bond distance pairs: (a) (P,S)-O(1) versus O(1)-O(1); (b) S-O(3) versus O(2)-O(3); (c) (P,S)-O(2) versus O(2)-O(3); (d) S-O(6) versus O(2)-O(3); (e) S-O(4) versus O(2)-O(3); (f) S-O(5) versus O(2)-O(3). An asterisk indicates that the oxygen atom (of *X*-O) serves as both donor and acceptor.

b=7.8798(10), c=9.1854(17) Å, and $\beta=100.534(14)^\circ$ (10), are almost identical to those of the present compound, as are the atomic coordinates (Table 6). The former crystallizes in space group $P2_1/n$, however, in contrast to C2/c for β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄), and thus the asymmetric unit is twice as large. The arrangement of the two types of chains is shown schematically in projection along the

FIG. 5. Schematic depiction of the checkerboard arrangement of Cs cation and of XO_4 anion chains in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄). Chains extend out of the plane of the paper.

and quantity of phosphorus atoms and the nature of the hydrogen bond network. In α -Cs₃(HSO₄)₂(H₂PO₄) every third atom along the zig-zag XO_4 chain consists of a PO₄ group. In contrast, in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) every third anion consists of a (P, S)O₄ group; that is, every third XO_4 group along the anion chain has a 50% probability of being either a phosphate group or a sulfate group. It is in this manner than the differences in the P:S ratio between the two compounds is accommodated.

In both compounds disordered hydrogen bonds exists between neighboring chains at the $PO_4/(P, S)O_4$ anion sites. Along the length of the chains, $\alpha\text{-Cs}_3(HSO_4)_2(H_2PO_4)$ has asymmetric, fully occupied hydrogen bonds between each XO_4 group. Accordingly, PO_4 groups are saturated with respect to hydrogen bonds (all four oxygen atoms participate in hydrogen bond formation), and the linkage between atoms has the following configuration:

$$\begin{array}{c} H(4) \\ | \vdots \\ O(1) \\ O(1) \\ | O(2) \\ | O(3) - P - O(4) - H(1) \cdots O(7) - S(2) - O(6) - H(2) \cdots O(11) - S(1) - O(8) \cdot] \cdots H(3) - O(12) \\ | O(5) \\ | O(5) \\ | H(5) \\ \end{array}$$

direction of chain extension in Fig. 5, whereas the zig-zag nature of the chains is evident in Fig. 6. The primary differences between the α and β structures are the location

where $\stackrel{...}{=}$ denote a disordered hydrogen bond between $O_{A/D}$ and H; — denotes a normal X–O bond, or one between O_D and H; and denotes a bond between O_A and H.

β	X	y	Z	U(eq)	α	X	У	Z	U(eq)
Cs(1)	0.5000	0.40247(8)	0.2500	0.0401(3)	Cs(3)	0.49681(2)	0.40789(5)	0.25988(4)	0.03644(12)
Cs(2)	0.32339(3)	0.13433(7)	0.38214(7)	0.0494(3)	Cs(1)	0.31893(2)	0.13498(5)	0.40528(4)	0.03998(13)
$Cs(2)\$1^a$	0.32339(3)	0.86567(7)	0.88214(7)	0.0494(3)	Cs(2)	0.32727(2)	0.85447(4)	0.86607(4)	0.03707(13)
$(P,S)^b$	0.5000	0.9061(3)	0.2500	0.0303(6)	P	0.49237(7)	0.9185(2)	0.24896(13)	0.0268(3)
S(1)	0.15878(9)	0.1286(2)	0.0703(2)	0.0378(5)	S(1)	0.16309(7)	0.1405(2)	0.06215(15)	0.0307(3)
S(1)\$1	0.15878(9)	0.8714(2)	0.5703(2)	0.0378(5)	S(2)	0.15817(7)	0.8676(2)	0.5803(2)	0.0326(3)
$O(1)_{A/D}$	0.5252(3)	0.0208(6)	0.1351(5)	0.0386(12)	$O(1)_{A/D}$	0.5171(2)	0.0287(5)	0.1330(4)	0.0349(8)
$O(1)_{A/D}$ \$2	0.4748(3)	0.0208(6)	0.3649(5)	0.0386(12)	$O(5)_{A/D}$	0.4714(2)	0.0264(5)	0.3710(4)	0.0321(8)
$O(2)_A$	0.4425(3)	0.7994(7)	0.1710(6)	0.0460(14)	$O(3)_D$	0.4315(2)	0.8072(6)	0.1744(4)	0.0431(10)
$O(2)_{A}$ \$1	0.4425(3)	0.2006(7)	0.5710(6)	0.0460(14)	$O(4)_D$	0.4473(2)	0.1993(5)	0.6777(4)	0.0416(9)
$O(3)_D$	0.1658(3)	0.7719(7)	0.7191(6)	0.0478(14)	$O(7)_A$	0.1644(2)	0.7554(6)	0.7110(5)	0.0439(10)
$O(3)_{D}$ \$1	0.1658(3)	0.2281(7)	0.2191(6)	0.0478(14)	$O(8)_A$	0.1719(2)	0.2376(6)	0.2065(5)	0.0432(10)
O(4)	0.1026(3)	0.9871(8)	0.5600(7)	0.059(2)	O(9)	0.0927(2)	0.9581(6)	0.5520(5)	0.0519(12)
O(4)\$3	0.6026(3)	0.4871(8)	0.5600(7)	0.059(2)	O(12)	0.6141(2)	0.4963(6)	0.5598(5)	0.0486(11)
$O(5)_{A^*}$	0.2215(3)	0.9623(9)	0.5781(8)	0.074(2)	O(2)	0.2181(2)	0.9794(5)	0.5972(5)	0.0484(11)
$O(5)_{A*}$ \$1	0.2215(3)	0.0377(9)	0.0781(8)	0.074(2)	$O(11)_A$	0.2337(2)	0.0701(6)	0.0571(5)	0.0488(11)
$O(6)_{D^*}$	0.1465(4)	0.7484(8)	0.4478(7)	0.067(2)	$O(6)_D$	0.1596(3)	0.7529(6)	0.4457(5)	0.0517(11)
$O(6)_{D*}$ \$3	0.6465(4)	0.2484(8)	0.4478(7)	0.067(2)	O(10)	0.6420(3)	0.2411(6)	0.4411(5)	0.0505(11)
H(1)	0.5	0	0		$H(4)^c$	0.498	0.985	0.039	
H(1)\$1	0.5	0	0.5		$H(5)^c$	0.498	0.991	0.468	
H(2)	0.1157(2)	0.7435(4)	0.7603(4)		H(1)	0.118	0.745	0.741	
H(2)\$4	0.3843(2)	0.7565(4)	0.2397(4)		H(3)	0.397	0.797	0.241	
$H(3)^d$	0.2072(2)	0.6906(11)	0.4490(9)		H(2)	0.204	0.690	0.460	

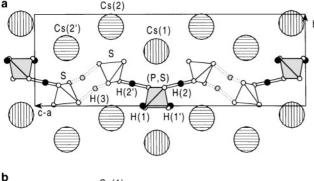
TABLE 6 Comparison of the Atomic Coordinates of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) (present work) and α -Cs₃(HSO₄)₂(H₂PO₄) (10)

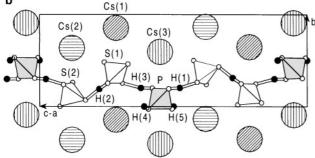
Note. Coordinates of some hydrogen atoms [H(1), H(4), and H(5)] in the latter compound were in error in original work and have been corrected here.

In β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄), similar, asymmetric, fully occupied hydrogen bonds exist between (P, S)O₄ and SO₄ groups, and thus the (P, S)O₄ anions are also saturated with respect to hydrogen bonds. Neighboring SO₄ groups, however, are linked by a pair of crystallographically equivalent hydrogen bonds with low proton occupancy (Fig. 6a), resulting in the following bond scheme:

cause there is a center of inversion at $(\frac{1}{4}\frac{1}{4}0)$ in C2/c that does not exist in $P2_1/n$ (Fig. 7). This operation causes there to be two H(3) hydrogen bonds in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x) O₄) where there is only one bond, H(2), in α -Cs₃(HSO₄)₂ (H₂PO₄). That is, placement of a hydrogen bond between one pair of oxygen atoms, O(5) and O(6'), linking two sulfate anions in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) must be accom-

From a crystallographic perspective, cyclic dimers are formed by neighboring sulfate groups in β -Cs₃(HSO₄)₂ (H_{2-x}(P_{1-x}S_x)O₄) and not in α -Cs₃(HSO₄)₂(H₂PO₄), be-


panied by the introduction of a second hydrogen bond between a related pair of oxygen atoms, O(5') and O(6), that links the same two sulfate anions.


[&]quot;Symmetry codes: \$1: x, 1 - y, z + 0.5; \$2: 1 - x, y, -z + 0.5; \$3: x + 0.5, y + 0.5, z; \$4: -x + 0.5, -y + 0.5, -z.

^b Site occupied by 0.5P and 0.5S.

^c Site occupancy of 0.5, presumed to correspond to locally disordered hydrogen bonds with protons slightly displaced from center of symmetry.

^d Site occupancy of 0.25.

FIG. 6. Projections of the structures of (a) β -Cs₃(HSO₄)₂(H_{2-x} (P_{1-x}S_x)O₄) and (b) α-CS₃(HSO₄)₂(H₂PO₄) on (101) showing the zig-zag Cs cation chains and the hydrogen bonded XO₄ anion chains.

From a chemical perspective, it appears that if one begins with the compound α -Cs₃(HSO₄)₂(H₂PO₄) and proceeds to replace some P⁶⁺ with S⁵⁺, the proton that is necessarily also removed for charge balance reasons, derives from the O(11)–O(6) bond between sulfate groups rather from any of the hydrogen bonds in which the phosphate anion participates. As the O(11)–O(6) bond becomes weaker (as a result of the lowered proton occupancy), the constraint, i.e., the hydrogen bond, that breaks the inversion symmetry between neighboring sulfate groups is weakened, and eventually the structure takes on a higher-symmetry configuration. This latter configuration may be expected to be thermodynamically more favorable because of its presumably higher entropy. At this stage, the proton, which was shared between only two oxygen atoms in α -Cs₃(HSO₄)₂ (H_2PO_4) , becomes shared by four in β -Cs₃ $(HSO_4)_2(H_{2-x})$ $(P_{1-x}S_x)O_4$). The compound containing the maximum phosphorus content is likely unable to crystallize in the C2/chigh-symmetry space group, by, for example, replacing the O(11)-O(6) bond in α -Cs₃(HSO₄)₂(H₂PO₄) with one between O(2)–O(11) as this latter distance is 3.717 Å (Fig. 7b) and much too long to accommodate a hydrogen bond. Similarly, the O(5)–O(5') distance in β -Cs₃(HSO₄)₂(H_{2-x} $(P_{1-x}S_x)O_4$) is 3.866 Å (Fig. 7a) and too long to permit the formation of a hydrogen bond.

The estimated occupancy of $\frac{1}{4}$ at the H(3) site in β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) provides for a total of $3\frac{1}{2}$

protons per formula unit and implies that there is, on average, one proton associated with every other O(5)–O(6)–O(5')–O(6') group. At present it is unclear whether this low proton occupancy reflects a time-averaged or position-averaged disorder. However, it is noteworthy that the O(5) and O(6) atoms exhibited significantly larger thermal vibrations than the other atoms (Fig. 3) and that Fourier difference maps revealed a small residual electron density peak in their vicinity. These results suggest that there may be some orientational disorder of the SO_4 group that may worthy of further examination by more suitable techniques.

The hydrogen bond networks formed by α -Cs₃(HSO₄)₂ (H_2PO_4) and β -Cs₃ $(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ are, respectively, three-dimensional, and "weakly" three-dimensional in nature. Three-dimensional frameworks, rather than layers, result from the cross-linking of chains at the PO₄ or (P, S)O₄ groups because neighboring chains are out of register with one another. That is to say, where one XO₄ unit in a zig-zag chain is in an "up" position, the comparable unit in a neighboring chain is in the "down" position. As a consequence, PO₄/(P, S)O₄ groups within one chain form bonds to different neighboring chains (Fig. 7), creating the threedimensional network observed. These structures differ significantly from that of CsH₂PO₄, in which crosslinking between straight chains of PO₄ groups leads to a twodimensional layer structure (18). If one considers only the disordered bonds that link PO₄/(P,S)PO₄ groups, a onedimensional chain extending along [100] exists. In β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) there is one crystallographically distinct bond in this chain, whereas in α -Cs₃(HSO₄)₂(H₂PO₄) there are two. In terms of the distribution of disordered hydrogen bonds, then, these two compounds are quite similar to CsH₂PO₄.

Despite the similarities between the structures of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α -Cs₃(HSO₄)₂(H₂PO₄), it is noteworthy that their X-ray powder diffraction patterns differ to an extent that makes it possible to readily distinguish the two. The experimental and calculated patterns are compared in Fig. 8. The clear differences between the patterns and between the respective IR and Raman spectra (Fig. 1) also demonstrate that these two compounds are indeed distinct phases.

Optical Spectroscopy

The low symmetry of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α -Cs₃(HSO₄)₂(H₂PO₄), as well as the existence of multiple, crystallographically independent X atoms, renders a complete group factor analysis of these compounds not only difficult, but also somewhat meaningless. To make a qualitative assignment of Raman peaks to vibrational modes, most of which are tied to XO_4 group vibrations, we examine the modes and frequencies observed for H_nXO₄ anions (21). The ideal, five-atom PO₄ or SO₄ tetrahedral

group exhibits T_d symmetry. Thus, there are nine vibrational modes, only four of which are independent: $v_1(a_1) = XO_4$ symmetric stretch; $v_2(e \times 2) = O - X - O$ bend; $v_3(f_2 \times 3) = XO_4$ asymmetric stretch; and $v_4(f_2 \times 3) =$ O-X-O bend. The influence of the addition of protons to the anion can be understood through a two-step process. First, in HXO_4 , one of the oxygen atoms is replaced with a hydroxyl group with point mass. This reduces the symmetry from T_d to $C_{3\nu}$, and eliminates degeneracies such that there are six rather than four independent vibrational modes. Second, the vibrations associated with the hydroxyl group are considered. There should be three such modes: O-H stretching, X-O-H in-plane bending, and X-O-H out-of-plane bending (or torsion). Similarly, the H₂XO₄ ion (or molecule) can be considered a group with $C_{2\nu}$ symmetry and therefore nine independent internal modes. In addition, there are six modes associated with the hydroxyl groups, as the $X(OH)_2$ stretching and bending modes may now be either symmetric or asymmetric. The case of H_3XO_4 , which ideally displays $C_{3\nu}$ symmetry, is similar to that of HXO₄; however, there are additional O-H modes. Literature values for the frequencies of each of these vibrations in H_nXO_4 groups are listed in Table 7.

To apply these concepts to the Raman spectra of β -Cs₃ (HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α -Cs₃(HSO₄)₂(H₂PO₄), it is necessary to first identify the H_nXO₄ groups present within

each structure. Ignoring the effect of protons bonded to acceptor oxygen atoms or to mixed acceptor/donor atoms, the former has one (P,S)O₄ group (free of protons) and one HSO₄ group (Table 4). The compound α -Cs₃(HSO₄)₂ (H₂PO₄), in contrast, has one H₂PO₄ group, one HSO₄ group, and one SO₄ group (10). Both compounds exhibit Raman peaks in the regions 410-500, 580-635, 820-1100, and $11\overline{20}-1245\,\mathrm{cm}^{-1}$ (Table 8). Those peaks in β -Cs₃ $(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ have an average full width halfmaximum of $27 \,\mathrm{cm}^{-1}$, whereas those in α -Cs₃(HSO₄)₂ (H₂PO₄) have a value of 15 cm⁻¹. Moreover, there are a greater number of peaks in the spectrum obtained from α- $Cs_3(HSO_4)_2(H_2PO_4)$ than from β - $Cs_3(HSO_4)_2(H_{2-x}(P_{1-x}S_x))$ O₄). Both observations are consistent with the lower symmetry, greater number of crystallographically distinct X atoms, and higher general state of order in the former than in the latter. While the resolution of the IR spectra is not as good as that of the Raman spectra, it is noteworthy that there is one relatively sharp peak at 725 cm⁻¹ in the IR spectra of both α -Cs₃(HSO₄)₂(H₂PO₄) and β -Cs₃ $(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ that does not appear in the Raman data.

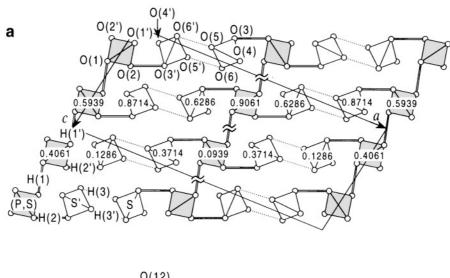

The Raman peaks obtained in the low-frequency regions of the spectra ($<650 \,\mathrm{cm}^{-1}$) most likely correspond to internal bending modes of the $\mathrm{H}_n \mathrm{XO}_4$ groups. With the exception of the appearance of extra peaks in the spectrum of

TABLE 7
Vibrational Modes and Frequencies of H _n XO ₄ Anions (cm ⁻¹)

Mode: Ref.:	$T_d X \mathcal{O}_4$	SO_4^{2-} (a) ^a	PO ₄ ^{3 -} (a)	C_{3v} H X O ₄	HSO ₄ (b)	HPO ₄ ²⁻ (c)	C_{3v} H_3XO_4	H ₃ PO ₄ (d)	$C_{2\nu}$ H_2XO_4	H ₂ SO ₄ (b)	H ₂ PO ₄ (c)
Bend	$E (\times 2) \\ \delta_{d}(OXO) (v_{2})$	451	358	$E \ (\times 2)$ $\delta_{as}(OXO)$	440	~ 390	$E (\times 2)$ $\delta_{as}(OHXOH)$	500	$\begin{matrix} A_1 \\ \delta(\text{OXO}) \\ A_2 \\ \rho_{\text{t}}(X\text{O}_2) \end{matrix}$	563 392	380 ^b
Bend	F_2 (×3) δ_d (OXO) (v_4)	613	500	A_1 $\delta_s(OXO)$ $E (\times 2)$	608 n/a	~530 ~530	A_1 $\delta_s(OHXOH)$ $E (\times 2)$	500 376	$ \begin{array}{c} A_1 \\ \delta(\text{OH}X\text{OH}) \\ B_1 \end{array} $	392 563	514 ^b
				$\rho_{\rm r}(X{ m O}_3)$	n/a	~ 330	$\rho_{\rm r}(X({\rm OH})_3)$	370	$\rho_{\rm r}(X{\rm O}_2) \\ B_2 \\ \rho_{\rm w}(X{\rm O}_2)$	422	314
Stretch	$A_1 \\ v_s(XO) (v_1)$	980	970	A_1 $v(XOH)$	902	850	$A_1 \\ v(XO)$	890	A_1 $\nu(XOH)$	910	874
Stretch	F_2 (×3) $v_{as}(XO)$ (v_3)	1104	1080	A_1 $v_s(XO_3)$	1036	987	A_1 $v_s(XOH)$	1178	A_1 $v(XO)$	1194	1074
				$E (\times 2)$ $v_{as}(XO_3)$	1195	1080	$E(\times 2)$ $v_{as}(XOH)$	1006	B_1 $v(XO)$	1368	1150
									B_2 $v(XOH)$	973	940

[&]quot;Sources: (a) Irish and Ozeki (22); (b) Gillespie and Robinson (23); (c) Preston and Adams (24); (d) Rudolph and Steger (25).

^b Simply designated "bending modes" without specification of the motion.

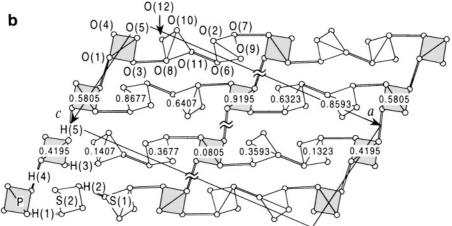


FIG. 7. Structures of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) (a, c) and of α -CS₃(HSO₄)₂(H₂PO₄) (b, d) shown in projection on (010). The elevations of the central X atoms are as given in (a) and (b). For clarity protons have been omitted from the figures, but bonds between hydrogen-bonded oxygen atoms are shown. Wavy lines in (a) and (c) that break hydrogen bonds indicate that one of the oxygen atoms in the hydrogen-bonded pair is not shown in the figure. For clarity, these bonds are omitted in (c) and (d).

 α -Cs₃(HSO₄)₂(H₂PO₄) at 475, 497, and 628 cm⁻¹, the spectra of the two materials are almost identical in this range. The peaks obtained in the region from 820 to $1100\,\mathrm{cm}^{-1}$ most likely correspond to $\mathrm{H}_n X\mathrm{O}_4$ stretching modes. In the case of α -Cs₃(HSO₄)₂(H₂PO₄) the stretching modes appear to be further distinguished into those with frequencies between 810 and 920 cm⁻¹ and those with frequencies between 970 and 1100 cm⁻¹. The three low-frequency stretches are interpreted to correspond to X-OH stretches, in particular, to the S-OH stretch of the HSO₄ ion and the symmetric and antisymmetric P-(OH)₂ stretches of the H₂PO₄ ion. The higher-frequency stretching modes are believed to reflect modes involving XO_n , for example, the symmetric and antisymmetric P-O₂ stretches of the H₂PO₄ ion and the S-O₃ stretch of the HSO₄ ion. The peaks in the 820 to $1100 \,\mathrm{cm}^{-1}$ region of the β - $Cs_3(HSO_4)_2(H_{2-x}(P_{1-x}S_x)O_4)$ spectrum are not nearly as well resolved as those of the α -Cs₃(HSO₄)₂(H₂PO₄) spectrum. This likely results from the two types of disorder noted in the structure of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄). First, the existence of both P and S on the same site leads to a smearing out of the X-O₄ stretching frequencies of the (P,S)O₄ ion. More importantly, the partial occupancy at the H(3) site results in sulfate groups that are in some cases HSO₄ ions, as assumed above, and in some cases H₂SO₄ ions. Thus, there is no clear distinction between sulfate stretching modes that involve singly protonated and doubly protonated anion groups. This is compounded by the fact that the oxygen atoms about the sulfur have, as discussed above, large thermal vibrations, indicating that they reside in shallow and possibly severely anharmonic potential wells or that the sulfate group itself may even undergo librations.

The Raman peaks obtained in the region from 1120 to $1245 \,\mathrm{cm}^{-1}$ are presumed to result primarily from X-O-H

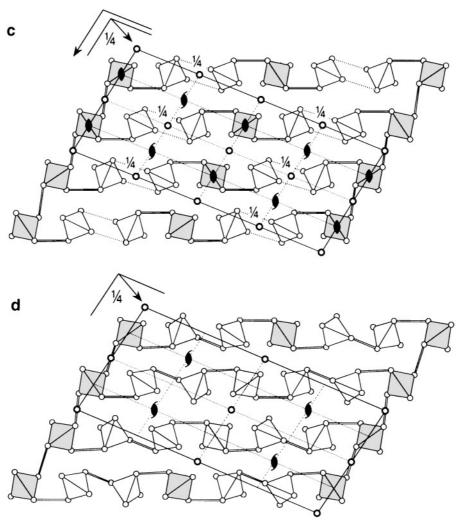


FIG. 7—Continued

in-plane bending modes, although there may be some contribution from X-O and X-OH stretching modes. In this region of the spectrum the peaks from β -Cs₃(HSO₄)₂ $(H_{2-x}(P_{1-x}S_x)O_4)$ are particularly broad relative to those of α -Cs₃(HSO₄)₂(H₂PO₄), reflecting, again, the disorder in the structure of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) in the vicinity of the proton sites. The IR peaks observed in both β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α -Cs₃(HSO₄)₂ (H_2PO_4) at $\sim 725 \,\mathrm{cm}^{-1}$ likely corresponds to an X-O-H out-of-plane bending mode. Marchon and Novak (26) have made such an assignment for two peaks observed in the IR spectrum of CsH₂PO₄ at 966 and 872 cm⁻¹ that were similarly Raman inactive. The high-frequency peaks noted in both the IR and Raman Spectra of both compounds (at \sim 2900, 2300, and 1700 cm⁻¹), have also been observed in the spectrum of CsH_2PO_4 (at 2700, 2300, and 1700 cm⁻¹) and are interpreted as OH stretching modes in Fermi resonance with combinations of OH bending vibrations (26).

Proton Conductivity and Phase Transitions

Proton transport in "superprotonic" materials such as CsHSO₄-I is generally understood to take place via a twostep process (27). The first step involves a proton jump from one XO₄ group to the next, and the second, the relaxation and reorientation of XO₄ groups into positions that are favorable for step 1. Such a diffusion process is sometimes known as a "structure" or "Grotthuss" mechanism. The signatures of dynamic XO₄ group reorientation and proton mobility in diffraction experiments are partially occupied oxygen and proton sites. Precisely these features, in particular, a partially occupied proton site and large O(5) and O(6) thermal vibrations, have been observed for β -Cs₃(HSO₄)₂ $(H_{2-x}(P_{1-x}S_x)O_4)$, and they undoubtedly explain the unusually high proton conductivity of this material at ambient temperatures (5). In addition, the compound undergoes a superprotonic transition at 125°C, exhibiting an increase

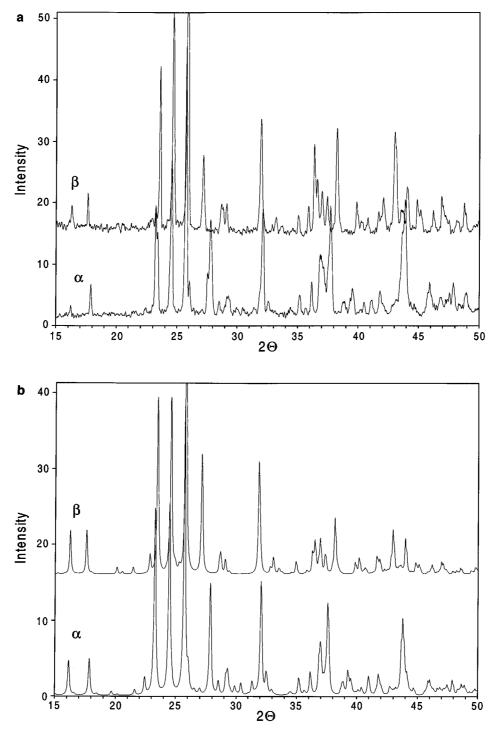


FIG. 8. Comparison of the X-ray powder diffraction patters of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α-CS₃(HSO₄)₂(H₂PO₄). (a) Experimentally obtained. (b) Calculated.

in conductivity of more than two orders of magnitude. The transition, similar to that in $CsHSO_4$, is important in that it demonstrates, together with our earlier observation of a transition in α - $Cs_3(HSO_4)_2(H_2PO_4)$, that phosphorus has no negative impact on superprotonic transitions. The

alkali dihydrogen phosphate compounds, in contrast, undergo thermal decomposition at elevated temperatures, before the onset of inherently high conductivity (28). In Haile *et al.* (10) we provide a possible explanation for the differences in behavior of the MH_2PO_4 compounds and the

TABLE 8
Positions and Relative Intensities of Peaks in the Raman Spectra of β -Cs₃(HSO₄)₂(H_{2-x}(P_{1-x}S_x)O₄) and α -Cs₃(HSO₄)₂(H₂PO₄)

β -Cs ₃ (HSO ₄) ₂ (H	$I_{2-x}(P_{1-x}S_x)O_4)$	α-Cs ₃ (HSO ₄)		
Wavenumber (cm ⁻¹)	Intensity	Wavenumber (cm ⁻¹)	Intensity	Qualitative Assignment
360	11	349	3	
426	58	418	34	
		431	31	
445	37	443	14	
		475	9	Bending
		497	4	modes
521	11	523	1	
590	54	587	58	
614	13	602	4	
		628	6	
832	5	826	18	
864	14	854	18	X–OH
910	47	901	19	stretching modes
947	42			
969	100	979	29	
993	57	993	63	X–O
		1006	20	stretching modes
1039	56	1026	32	
1083	11	1048	100	
1126	12	1130	5	
1164	18	1186	12	X-O-H in-plane
1205	18	1219	16	bending modes
1243	1	1244	6	

sulfate-containing compounds on the basis of the hydrogen bond network. Essentially, it is proposed that the presence of oxygen atoms with different hydrogen bond environments (at room temperature) is a key prerequisite for superprotonic behavior at elevated temperatures. In this model, entropic considerations that favor chemically equivalent bonds drive a transition to a disordered state, which, in turn, leads to high conductivity. Because MH_2PO_4 compounds have saturated H_2PO_4 groups, all oxygen atoms participate in hydrogen bond formation at room temperature, and there is no driving force for a structural transition.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation through a National Young Investigator Award, by Battelle National Laboratories, and by the Electric Power Research Institute. The authors thank Scott Kuehner of the University of Washington for assistance with the electron microprobe analyses, and Dr. Wim Klooster of Brookhaven

National Laboratories for providing the results of a preliminary refinement of neutron diffraction data. Alex Katz of the California Institute of Technology kindly collected IR and Raman spectra.

REFERENCES

- A. I. Baranov, L. A. Shuvalov, and N. M. Shchagina, *JETP Lett.* 36, 459 (1982).
- A. Pawlowski, Cz. Pawlaczyk, and B. Hilczer, Solid State Ionics 44, 17 (1990).
- B. V. Merinov, A. I. Baranov, L. A. Shuvalov, and N. M. Shchagina, Sov. Phys. Cryst. 36, 321 (1991).
- 4. S. Haile, G. Lentz, K.-D. Kreuer, and J. Maier, *Solid State Ionics* 77, 128 (1995).
- 5. S. M. Haile, P. M. Calkins, and D. Boysen, *Solid State Ionics* 97, 145 (1997)
- F. Schamber, N. Wodke, and J. McCarthy, "ZAF Matrix Correction Procedure for Bulk Samples: Operation and Program Description," Publication TN-2120. Tracor Northern, Middleton, WI, 1981.
- 7. G. D. Christian, "Analytical Chemistry," 5th ed. Wiley, New York,
- 8. S. M. Haile and P. M. Calkins, accepted, J. Solid State Chem.
- 9. P. M. Calkins, M.S. thesis, University of Washington, 1996.
- S. M. Haile, K.-D. Kreuer, and J. Maier, *Acta Crystallogr. Sect. B* 53, 680 (1995).
- 11. W. T. Klooster and S. M. Haile, under preparation.
- D. T. Cromer and J. T. Waber, "International Tables for X-ray Crystallography," Vol. IV, Table 2.2A, pp. 128–134. Kynoch Press, Birmingham, 1974. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- G. M. Sheldrick, in "Crystallographic Computing 3" (G. M. Sheldrick, C. Krüger, and R. Goddard, Eds.), pp. 175–189. Oxford Univ. Press, Oxfordshire, 1985.
- G. M. Sheldrick, in "Crystallographic Computing 6" (H. D. Flack, L. Parkanyi, and K. Simon, Eds.), pp. 100–110. Oxford Univ. Press, Oxfordshire, 1993.
- R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
- 16. M. Ichikawa, Acta Crystallogr. Sect. B 43, 23 (1986).
- 17. M. Ichikawa, Acta Crystallogr. Sect. B 34, 2074 (1978).
- H. Matsunaga, K. Itoh, and E. Nakamura, J. Phys. Soc. Japan 48, 2011 (1980).
- Y. Noda, S. Uchiyama, K. Kafuku, H. Kasatani, and H. Terauchi, J. Phys. Soc. Japan 59, 2804 (1990).
- A. V. Belushkin, W. I. F. David, R. M. Ibberson, and L. Shuvalov, *Acta Crystallogr. Sect. B* 47, 161 (1991).
- K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds." Wiley, New York, 1963.
- D. E. Irish and T. Ozeki, in "Chemical Analysis" (J. G. Gasselli and B. J. Bulkin, Eds.), Vol. 114, Chap 4. Wiley, New York, 1991.
- 23. R. J. Gillespie and E. A. Robinson, Can. J. Chem. 40, 644 (1962).
- 24. C. M. Preston and W. A. Adams, J. Phys. Chem. 83, 814 (1979).
- 25. Von W. Rudolph and W. E. Steger, Z. Phys. Chem. 172, 49 (1991).
- 26. B. Marchon and A. Novak, J. Chem. Phys. 78, 2105 (1983).
- 27. K.-D. Kreuer, Chem. Mater. 8, 610 (1996).
- 28. K.-S. Lee, J. Phys. Chem. Solids 57, 333 (1996).